TABLE ERRATA

471.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill Book Co., New York, 1953.

In Volume I the following changes should be made.
P. 64: In the fifth line above the heading of Section 2.15, for $|\arg (1-z)|<1$, read $|\arg (1-z)|<\pi$.
P. 147: In the denominator of the right member of the last equation, for $\Gamma(\nu+n+1)$, read $\Gamma(\nu-n+1)$.
P. 155: In formula 3.7(6), add the condition $\operatorname{Re} z>0$.
P. 158: In formula 3.7(23), add the condition $0<\theta<\pi / 2$.

In Volume II the following corrections are necessary.
P. 93: In formula 7.14.2(37), add the condition $\operatorname{Re} \rho>-1$, and in formula 7.14.2(38) change $\operatorname{Re}(\rho+\nu-\mu)>-1, \operatorname{Re} \rho>-1$ to $\operatorname{Re}(1 \pm \nu \pm \mu)>\operatorname{Re} \rho>$ -1 .

Martin Katzin
Electromagnetic Research Corporation
College Park, Maryland 20740

Editorial note: For notices of additional corrections see Math. Comp., v. 24, 1970, p. 239, MTE 450 and the editorial footnote thereto; also v. 17, 1963, p. 485, MTE 338 and v . 18, 1964, p. 687, MTE 360.
472.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Co., New York, 1954.

In Volume I, p. 332, the transform in $6.8(38)$ should read $g(s)=-\int_{0}^{\infty}\{ \} x^{s-1} d x$.
In Volume II the following corrections should be made.
P. 130: In 10.2(17), in $f(x)$ change $+\cos [(1 / 2 \nu-\mu) \pi]$ to $\times \cos [(1 / 2 \nu-\mu) \pi]$.
P. 177: In 12.1(15), for

$$
\frac{1}{2}\left[\pi \alpha y /\left(y^{2}+\alpha^{2}\right)\right]^{1 / 2} \exp \left[-\left(y^{2}+\alpha^{2}\right)^{1 / 2}\right],
$$

read

$$
\frac{1}{2}\left[\pi \alpha y /\left(y^{2}+\alpha^{2}\right)^{1 / 2}\right]^{1 / 2} \exp \left[-\left(y^{2}+\alpha^{2}\right)^{1 / 2}\right] .
$$

P. 344: In 19.2(36) the constant on the right side should be $-\left(\frac{1}{2} a\right)^{1 / 2}$ instead of $-\left(\frac{1}{2} a\right)^{-1 / 2}$. (This is given correctly in formula 7.181(2) on p. 810 of Tables of Integrals, Series, and Products, by I. S. Gradshteyn \& I. M. Ryzhik, Academic Press, New York 1965.)

Martin Katzin

Editorial note: For references to additional errata see Math. Comp., v. 24, 1970, pp. 239-240, MTE 451 and the footnote thereto.
473.-I. S. Gradshteyn \& I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Acadenic Press, New York, 1965.

On p. 326, in each of formulas 3.411(19) and 3.411(20) the coefficient n_{k}, defined as the ascending factorial of order k, should be replaced by the binomial coefficient $\binom{n}{k}$.

This error has been reproduced from a publication of Lindman [1]; the corresponding original formulas in the table of Bierens de Haan [2] are free from error.

Carl W. Muhlhausen
Daniel D. Konowalow

Department of Chemistry
State University of New York at Binghamton
Binghamton, New York 13901

1. C. F. Lindman, Examen des Nouvelles Tables d'Intégrales Définies de M. Bierens de Haan, reprinted by G. E. Stechert, New York, 1944, pp. 48-49.
2. D. Bierens de Haan, Nouvelles Tables d'Intégrales Définies, corrected reprint, Stechert, New York, 1939, Table 89, formulas 10 and 15, p. 130.

Editorial note: For announcements of additional errors in this edition of the tables of Gradshteyn \& Ryzhik see Math. Comp., v. 20, 1966, pp. 616-617, RMT 85; v. 21, 1967, pp. 293-294, MTE 408; v. 22, 1968, pp. 903-907, MTE 428; v. 23, 1969, pp. 468-469, MTE 437.
474.-Peter Gray, Tables for the Formation of Logarithms and Antilogarithms to Twenty-Four Decimal Places, 1st ed., Layton, London, 1876 (2nd ed. 1900).

On p. 30 the last two places of the 18 S value of $e^{\pi \sqrt{43}}$ should read 66 instead of 23. Likewise, on p. 31 the final two digits of the 24 S value of $e^{\pi \sqrt{67}}$ should read 54 instead of 68.

Corresponding corrections are required in Volume I, p. 140 (Section 5.522) of the FMRC Index [1], where these values of Gray are reproduced.

Hans A. Larsen

Rens

6371 Store-Jyndevad
Denmark

1. A. Fletcher, J. C. P. Miller, L. Rosenhead \& L. J. Comrie, An Index of Mathematical Tables, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1962.
475.-Dov Jarden, Recurring Sequences, 2nd ed., Riveon Lematematika, Jerusalem, 1966. [See Math. Comp., v. 23, 1969, pp. 212-213, RMT 9.]

On p. 55, the cofactor of V_{272} should read

$$
9606148757845010999287540714389194369 c,
$$

and the cofactor of V_{278} should read

On p. 59, the second largest prime factor of V_{375} should read

$$
468535826053501
$$

instead of
46853582653501.

John Brillhart
University of Arizona
Tucsen, Arizona 85721
476.-W. Magnus \& F. Oberhettinger, Formeln und Sätze fiir die speziellen Funktionen der mathematischen Physik, Springer, Berlin, 1948.

In Chapter VI, Section 3, p. 123 a minus sign should be prefixed to the right side of the formula for $D_{-2}(z)$.

Henry E. Fettis
Applied Mathematics Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433
Editorial note: This error is reproduced on p. 93 of the English translation published by Chelsea Publishing Co., New York in 1954. Notices of additional errors in these two editions appear in Math. Comp., v. 21, 1967, p. 523, MTE 413, p. 524, MTE 414; v. 22, 1968, p. 909, MTE 430.
477.-W. Magnus, F. Oberhettinger \& R P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966.

On the first line of p. 3, the right side of the equation should read

$$
(-1)^{n} \frac{m!}{(m-n)!}
$$

On p. 170, the first equation should read $P_{-\nu-1}^{\mu}(x)=P_{\nu}^{\mu}(x)$.
On p. 188, the first equation in Section 4.6.2 should read
$\Gamma\left(\frac{1}{2}-\mu\right)\left(1-x^{2}\right)^{\mu / 2} \pi^{1 / 2} 2^{-\mu} P_{\nu}^{\mu}(x)=\int_{0}^{\pi}\left[x+i\left(1-x^{2}\right)^{1 / 2} \cos t\right]^{\nu-\mu}(\sin t)^{-2 \mu} d t$,
$\operatorname{Re} \mu<\frac{1}{2}, 0<x<1$.
Martin Katzin
Editorial note: For notices of additional errors, see Math. Comp., v. 23, 1969, p. 471, MTE 440, and v. 24, 1970, p. 240, MTE 453.

